import numpy as np
speed = [10, 20, 30, 40]
# mean of an array - sum(speed) / len(speed)
x = np.mean(speed)
print(x)
# output 25.0
# return the median number - If there are two numbers in the middle, divide the sum of those numbers by two.
x = np.median(speed)
print(x)
# output 25.0
# return standard deviation - the lower the number return the closer the data is related
x = np.std(speed)
print(x)
# output 11.180339887498949
# return Variance of array - show how spread out the data is. The smaller the number the closer the data is related
x = np.var(speed)
print(x)
# output 125.0
# returns percentile of an array.
x = np.percentile(speed, 20)
print(f"20 percent of speed is {x} or lower")
# output 20 percent of speed is 16.0 or lower
x = np.percentile(speed, 90)
print(f"90 percent of speed is {x} or lower")
# output 90 percent of speed is 37.0 or lower
# We specify that the mean value is 5.0, and the standard deviation is .2.
# the lower the scale the closer the random numbers are to the loc number
# returns size of 100 floats in array
# normal distribution
x = np.random.normal(loc=5.0, scale=.2, size=100)
print(x)
# create array
arr = np.array([10, 20, 20, 30, 30, 20])
print("Original array:")
print(arr)
print("Mode: Most frequent value in the above array:")
print(np.bincount(arr).argmax())
# output
# Most frequent value in the above array:
# 20
# returns the least common multiple
x = np.lcm(3, 4)
print(x)
# output 12
# returns the lowest common multiple of items in array
arr = np.array([3, 6, 9])
x = np.lcm.reduce(arr)
print(x)
# 18
# returns the greatest common multiple of 2 numbers
x = np.gcd(3, 4)
print(x)
# output 1
# return the highest common multiple of items in array
arr = np.array([20, 8, 32, 36, 16])
x = np.gcd.reduce(arr)
print(x)
# output 4
def quicksort(arr):
if len(arr) <= 1:
return arr
pivot = arr[len(arr) // 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return quicksort(left) + middle + quicksort(right)
print(quicksort([3,6,8,10,1,2,1]))
# Prints "[1, 1, 2, 3, 6, 8, 10]"
>>> # The standard way to import NumPy:
>>> import numpy as np
>>> # Create a 2-D array, set every second element in
>>> # some rows and find max per row:
>>> x = np.arange(15, dtype=np.int64).reshape(3, 5)
>>> x[1:, ::2] = -99
>>> x
array([[ 0, 1, 2, 3, 4],
[-99, 6, -99, 8, -99],
[-99, 11, -99, 13, -99]])
>>> x.max(axis=1)
array([ 4, 8, 13])
>>> # Generate normally distributed random numbers:
>>> rng = np.random.default_rng()
>>> samples = rng.normal(size=2500)
<div>
<article class="print:hidden">
<h1>My Secret Pizza Recipe</h1>
<p>This recipe is a secret, and must not be shared with anyone</p>
<!-- ... -->
</article>
<div class="hidden print:block">
Are you seriously trying to print this? It's secret!
</div>
</div>