DekGenius.com
PYTHON
Remove duplicates with pandas
import pandas as pd
# Drop all duplicates in the DataFrame
df = df.drop_duplicates()
# Drop all duplicates in a specific column of the DataFrame
df = df.drop_duplicates(subset = "column")
# Drop all duplicate pairs in DataFrame
df = df.drop_duplicates(subset = ["column", "column2"])
# Display DataFrame
print(df)
python: remove duplicate in a specific column
df = df.drop_duplicates(subset=['Column1', 'Column2'], keep='first')
drop duplicates pandas first column
import pandas as pd
# making data frame from csv file
data = pd.read_csv("employees.csv")
# sorting by first name
data.sort_values("First Name", inplace = True)
# dropping ALL duplicte values
data.drop_duplicates(subset ="First Name",keep = False, inplace = True)
# displaying data
print(data)
remove duplicate row in df
df = df.drop_duplicates()
remove duplicates based on two columns in dataframe
df.drop_duplicates(['A','B'],keep= 'last')
how to duplicate columns pandas
df = pd.concat([df, df['column']], axis=1)
dataframe delete duplicate rows with same column value
df = df.drop_duplicates(subset=['Column1', 'Column2'], keep='first')
# Exemple
import pandas as pd
df = pd.DataFrame({"A":["foo", "foo", "foo", "bar"], "B":[0,1,1,1], "C":["A","A","B","A"]})
df.drop_duplicates(subset=['A', 'C'], keep=False)
pandas drop duplicates from column
data = data.drop_duplicates(subset=['City'], keep='first')
dataframe delete duplicate rows with same column value
df = df.drop_duplicates(subset=['Column1', 'Column2'], keep='first')
# Exemple
import pandas as pd
df = pd.DataFrame({"A":["foo", "foo", "foo", "bar"], "B":[0,1,1,1], "C":["A","A","B","A"]})
df.drop_duplicates(subset=['A', 'C'], keep=False)
remove duplicate columns python dataframe
df = df.loc[:,~df.columns.duplicated()]
pandas merge two dataframes remove duplicates
concat = pd.merge(data_1, data_2, how='inner')
python pandas remove duplicates and make that change to same dataframe
# If same dataset needs to be updated:
df.drop_duplicates(keep=False, inplace=True)
pd df drop duplicates
df.drop_duplicates(subset=['brand', 'style'], keep='last')
how to drop duplicate columns in pandas that dont have the same name?
# Drop duplicate columns
df2 = df.T.drop_duplicates().T
print(df2)
drop duplicates data frame pandas python
df.drop_duplicates(keep=False, inplace=True)
pd.merge duplicate columns remove
#Create test data
df1 = pd.DataFrame(np.random.randint(100,size=(1000, 3)),columns=['A','B','C'])
df2 = pd.DataFrame(np.random.randint(100,size=(1000, 3)),columns=['B','C','D'])
pd.merge(df1, df2, how='inner', left_on=['B','C'], right_on=['B','C'])
drop duplicates columns pandas
df.loc[:,~df.columns.duplicated()]
pandas remove duplicates columns
df = df.loc[:,~df.columns.duplicated()].copy()
# https://stackoverflow.com/questions/14984119/python-pandas-remove-duplicate-columns
pandas remove duplicates
© 2022 Copyright:
DekGenius.com