Search
 
SCRIPT & CODE EXAMPLE
 

PYTHON

train test split sklearn

from sklearn.model_selection import train_test_split

X = df.drop(['target'],axis=1).values   # independant features
y = df['target'].values					# dependant variable

# Choose your test size to split between training and testing sets:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
Comment

sklearn train_test_split

 import numpy as np
 from sklearn.model_selection import train_test_split


X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.33, random_state=42
)
Comment

train_test_split sklearn

from sklearn.model_selection import train_test_split
X = df.drop("target", axis=1)
y = df["target"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
Comment

train test split sklearn

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
Comment

Splitting training and test data using sklearn

#Let us now split the dataset into train & test
from sklearn.model_selection import train_test_split
x_train,x_test, y_train, y_test = train_test_split(X, y, test_size = 0.30, random_state=0)
print("x_train ",x_train.shape)
print("x_test ",x_test.shape)
print("y_train ",y_train.shape)
print("y_test ",y_test.shape)
Comment

scikit learn train test split

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
Comment

train dev test split sklearn

train, validate, test = np.split(df.sample(frac=1), [int(.6*len(df)), int(.8*len(df))])
Comment

train_test_split from sklearn.selection

import sklearn.model_selection as model_selectionX_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, train_size=0.65,test_size=0.35, random_state=101)print ("X_train: ", X_train)print ("y_train: ", y_train)print("X_test: ", X_test)print ("y_test: ", y_test)
Comment

sklearn train test split

##sklearn train test split

from sklearn.model_selection import train_test_split

X = df.drop(['target'],axis=1).values   # independant features
y = df['target'].values					# dependant variable

# Choose your test size to split between training and testing sets:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

#OR Randomly split your whole dataset to your desired percentage, insted of using a  ttarget variable:

training_data = df.sample(frac=0.8, random_state=25) #here we choose 80% as our training sample and for reproduciblity, we use random_state of 42
testing_data = df.drop(training_data.index) # testing sample is 20% of our initial data

Comment

train test split sklearn

import pandas as pd
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split

cal_housing = fetch_california_housing()
X = pd.DataFrame(cal_housing.data, columns=cal_housing.feature_names)
y = cal_housing.target

y -= y.mean()

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0)
Comment

PREVIOUS NEXT
Code Example
Python :: python find closest lower value in list 
Python :: pandas replce none with nan 
Python :: how to import flask restful using pip 
Python :: python remove duplicates words from string 
Python :: datetime to unix timestamp milliseconds python 
Python :: python list comprehension if else 
Python :: pytest check exception 
Python :: noninspection access to protected member 
Python :: getting multiple selected value django 
Python :: how to read unicode in python 
Python :: python ddos 
Python :: append record in csv 
Python :: python save output to file 
Python :: remove all integers from list python 
Python :: python hello world program 
Python :: convert string to list python 
Python :: python input 
Python :: django and operator 
Python :: How to get the value of an Entry widget in Tkinter? 
Python :: should i make tkinter in classes ? , Best way to structure a tkinter application? 
Python :: run python file using python code 
Python :: measure cell execution time in ipython notebook 
Python :: python try then change something and try again if fails 
Python :: python longest word in string 
Python :: python fibonacci 
Python :: print pandas version python 
Python :: how to write to a netcdf file using xarray 
Python :: normal distribution in python 
Python :: venv python 
Python :: remove a file or dir in linux or mac or ubuntu 
ADD CONTENT
Topic
Content
Source link
Name
1+3 =