Search
 
SCRIPT & CODE EXAMPLE
 

PYTHON

numpy standard deviation

import numpy as np
data = [68,86,36,57,24,46,32,53] #define some data
data_std = np.std(data) #outputs 19.00493356999703
Comment

numpy standard deviation

aux = np.array( [[0, 0, 0], [1, 2, 3]] )
np.std( aux, axis=0 )
Comment

standard deviation in python numpy

a = [1,2,3,4,5]
numpy.std(a) # will give the standard deviation of a
Comment

numpy standard deviation

import numpy as np


speed = [10, 20, 30, 40]

# mean of an array - sum(speed) / len(speed)
x = np.mean(speed)
print(x)
# output 25.0

# return the median number - If there are two numbers in the middle, divide the sum of those numbers by two.
x = np.median(speed)
print(x)
# output 25.0

# return standard deviation - the lower the number return the closer the data is related
x = np.std(speed)
print(x)
# output 11.180339887498949

# return Variance of array - show how spread out the data is. The smaller the number the closer the data is related
x = np.var(speed)
print(x)
# output 125.0

# returns percentile of an array.
x = np.percentile(speed, 20)
print(f"20 percent of speed is {x} or lower")
# output 20 percent of speed is 16.0 or lower

x = np.percentile(speed, 90)
print(f"90 percent of speed is {x} or lower")
# output 90 percent of speed is 37.0 or lower

# We specify that the mean value is 5.0, and the standard deviation is .2.
# the lower the scale the closer the random numbers are to the loc number
# returns size of 100 floats in array
# normal distribution
x = np.random.normal(loc=5.0, scale=.2, size=100)
print(x)

# create array
arr = np.array([10, 20, 20, 30, 30, 20])
print("Original array:")
print(arr)

print("Mode: Most frequent value in the above array:")
print(np.bincount(arr).argmax())
# output
# Most frequent value in the above array:
# 20
# returns the least common multiple
x = np.lcm(3, 4)
print(x)
# output 12


# returns the lowest common multiple of items in array
arr = np.array([3, 6, 9])
x = np.lcm.reduce(arr)
print(x)
# 18

# returns the greatest common multiple of 2 numbers
x = np.gcd(3, 4)
print(x)
# output 1

# return the highest common multiple of items in array
arr = np.array([20, 8, 32, 36, 16])
x = np.gcd.reduce(arr)
print(x)
# output 4
Comment

standard deviation in python without numpy

import math

xs = [0.5,0.7,0.3,0.2]     # values (must be floats!)
mean = sum(xs) / len(xs)   # mean
var  = sum(pow(x-mean,2) for x in xs) / len(xs)  # variance
std  = math.sqrt(var)  # standard deviation
Comment

PREVIOUS NEXT
Code Example
Python :: python pandas dataframe conditional subset 
Python :: how to change an integer to a string in python permanently 
Python :: insert an element in list python 
Python :: python selenium console log 
Python :: how to remove last item from list python 
Python :: parse xml in python 
Python :: reshape IML matrix 
Python :: Proj 4.9.0 must be installed. 
Python :: pandas replace word begins with contains 
Python :: python equivalent of R sample function 
Python :: drop the first 10 values of list python 
Python :: detect gender from name 
Python :: upper python python.org 
Python :: image processing python 
Python :: how to declare a lambda in python 
Python :: numpy roll 
Python :: python basics flask project 
Python :: python typing module list 
Python :: xlabel not showing matplotlib 
Python :: guessing game python 
Python :: python count how many times a word appears in a string 
Python :: pysimplegui get value from textbox 
Python :: change column order pandas 
Python :: How To Display An Image On A Tkinter Button 
Python :: convert 2 lists into dictionary 
Python :: django migrations 
Python :: topological sort 
Python :: How to Loop Through Tuples using for loop in python 
Python :: list programs in python 
Python :: how to close opened file in python 
ADD CONTENT
Topic
Content
Source link
Name
5+5 =