A tree is a graph whose degree of node== # of it's children & is acyclic
Binary tree is a tree with each node having atmost 2 children.
2 ways to traverse each node once:
BFS - level wise
DFS - BY RECURSIVELY TRAVERSING ROOT,LEFT SUBTREE (L) & RIGHT SUBTREE (R)
NOTE: THERE ARE 3! WAYS OF DOING A DFS, BASED ON ORDER OF Root,L,R.
but only 3 are useful :
Root,L,R- preorder traversal
L,Root,R- inorder traversal
L,R,Root- postorder traversal
//BINARY TREE TRAVERSAL
//---------------------
public class traversal{
public static void main(String[] args) {
treetraversal t = new treetraversal();
t.root = new node('A'); // initializing the root node
t.root.left = new node('B'); // initializing the left node
t.root.right = new node('C'); // initializing the right node
t.root.left.left = new node('D'); // initializing the sub-left node of the left node
t.root.left.right = new node('E'); // initializing the sub-right node of the left node
t.root.right.left = new node('F'); // initializing the sub-left node of the right node
t.root.right.right = new node('G'); // initializing the sub-right node of the right node
//this tree can be made as large as the we want it to be by adding further sub nodes
System.out.println("IN ORDER TRAVERSAL");
t.InOrderTraversal(t.root);
System.out.println();
System.out.println();
System.out.println("PRE ORDER TRAVERSAL");
t.PreOrderTraversal(t.root);
System.out.println();
System.out.println();
System.out.println("POST ORDER TRAVERSAL");
t.PostOrderTraversal(t.root);
}
}
class node{ //as there are nodes in trees
char key;//as every node has a value or key
node left,right;//as every node will have a left and a right child
node(char KEY){
this.key = KEY;
}
}
class treetraversal{
/*there are thre types of traversals
1. InOrder Traversal
2. PreOrder Traversal
3.PostOrder Traversal
*/
node root;//as every tree has a root node to which there exist left and right nodes
void InOrderTraversal(node n){
//InOrder Traversal = Left Root Right
if(n!=null){
InOrderTraversal(n.left);
System.out.print(n.key + " ");
InOrderTraversal(n.right);
}
}
void PreOrderTraversal(node n){
//PreOrder Traversal = Root Left Right
if(n!=null){
System.out.print(n.key + " ");
PreOrderTraversal(n.left);
PreOrderTraversal(n.right);
}
}
void PostOrderTraversal(node n){
//PostOrder Traversal = Left Right Root
if(n!=null){
PostOrderTraversal(n.left);
PostOrderTraversal(n.right);
System.out.print(n.key + " ");
}
}
}
How to perform in-order traversal of a binary tree?
/*
This is an implementation that collects the
values of the nodes of a binary tree by performing
an in-order traversal of the tree.
Let n be the number of binary tree nodes
Time complexity: O(n)
Space complexity: O(n)
*/
import java.util.List;
import java.util.ArrayList;
public class BTInOrderTraversal {
private BTNode BTRoot;
public BTInOrderTraversal() {
/*
* Create tree below:
* 1
*
* 2
* /
* 3
*/
BTRoot = new BTNode(1, null, null);
BTNode rootRight = new BTNode(2, null, null);
BTRoot.right = rootRight;
BTNode rootRightLeft = new BTNode(3, null, null);
rootRight.left = rootRightLeft;
}
public static void main(String[] args) {
BTInOrderTraversal application = new BTInOrderTraversal();
List<Integer> values = application.inorderTraversal();
System.out.println(values); // [1, 3, 2]
}
// Perform in-order traversal through the tree.
public List<Integer> inorderTraversal() {
List<Integer> list = new ArrayList<>();
populateList(BTRoot, list);
return list;
}
// Helper method to populate list by performing
// in-order traversal through the tree.
private void populateList(BTNode root, List<Integer> list) {
if (root == null) {
return;
}
if (root.left != null) {
populateList(root.left, list);
}
list.add(root.val);
if (root.right != null) {
populateList(root.right, list);
}
}
// Class representing a binary tree node
// with pointers to value, left, and right nodes
private class BTNode {
int val;
BTNode left;
BTNode right;
public BTNode(int val, BTNode left, BTNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
}
class Node:
def __init__(self, k):
self.left = None
self.right = None
self.key = k
def inorder(root):
if root != None:
inorder(root.left)
print(root.key)
inorder(root.right)
# Driver Code
root = Node(10)
root.left = Node(20)
root.right = Node(30)
root.right.left = Node(40)
root.right.right = Node(50)
inorder(root)
# time complexity (using recurrence tree method) - O(n)
where,
n == total nodes
# space complexity - O(height of tree)
Note: height can be both n (if each node has exactly 1 child) and
log(n) (if every node has exactly 2 children).
# IMP NOTE : FOR PREORDER AND POSTORDER JUST ORDER OF STATEMENTS CHANGE
for ex:
below is preorder & postorder traversal with same time & space complexity as inorder
def preorder(root):
if root == None:
return
print(root.key)
preorder(root.left)
preorder(root.right)
def postorder(root):
if root == None:
return
preorder(root.left)
preorder(root.right)
print(root.key)