import requests
import pandas as pd
txt_data = requests.get('https://downloads.usda.library.cornell.edu/usda-esmis/files/c821gj76b/n870zs10r/h989r4519/AgriPric-03-30-2017.txt').text
splited_data = txt_data.split('
')
table_title = 'Prices Received for Field Crops and Fruits - United States: February 2017 with Comparisons'
END_TABLE_LINE = '-------------------------------------------'
def find_no_line_start_table(table_title,splited_data):
found_no_lines = []
for index, line in enumerate(splited_data):
if table_title in line:
found_no_lines.append(index)
return found_no_lines
_, table_start = find_no_line_start_table(table_title,splited_data)
def get_start_data_table(table_start, splited_data):
for index, row in enumerate(splited_data[table_start:]):
if '(D)' in row:
return table_start + index
def get_end_table(start_table_data, splited_data ):
for index, row in enumerate(splited_data[start_table_data:]):
if END_TABLE_LINE in row:
return start_table_data + index
def row(l):
l = l.split()
number_columns = 5
if len(l) >= number_columns:
data_row = [''] * number_columns
first_column_done = False
index = 0
for w in l:
if not first_column_done:
data_row[0] = ' '.join([data_row[0], w])
if ':' in w:
first_column_done = True
else:
index += 1
data_row[index] = w
return data_row
start_line = get_start_data_table(table_start, splited_data)
end_line = get_end_table(start_line, splited_data)
table = splited_data[start_line : end_line]
def take_table(txt_data):
comodity = []
price_2011 = []
feb_2016 = []
jan_2017 = []
feb_2017 = []
for r in table:
data_row = row(r)
if data_row:
col_1, col_2, col_3, col_4, col_5 = data_row
comodity.append(col_1)
price_2011.append(col_2)
feb_2016.append(col_3)
jan_2017.append(col_4)
feb_2017.append(col_5)
table_data = {'comodity': comodity, 'price_2011': price_2011,
'feb_2016': feb_2016, 'jan_2017': jan_2017, 'feb_2017': feb_2017}
return table_data
dict_table = take_table(txt_data)
pd.DataFrame(dict_table)