DekGenius.com
PYTHON
pandas concat series into dataframe
In [1]: s1 = pd.Series([1, 2], index=['A', 'B'], name='s1')
In [2]: s2 = pd.Series([3, 4], index=['A', 'B'], name='s2')
In [3]: pd.concat([s1, s2], axis=1)
Out[3]:
s1 s2
A 1 3
B 2 4
In [4]: pd.concat([s1, s2], axis=1).reset_index()
Out[4]:
index s1 s2
0 A 1 3
1 B 2 4
df concat
pd.concat([s1, s2], ignore_index=True)
pandas concatenate
df1 = pd.DataFrame({"A": ["A0", "A1", "A2", "A3"]
, "B": ["B0", "B1", "B2", "B3"]
, "C": ["C0", "C1", "C2", "C3"]
, "D": ["D0", "D1", "D2", "D3"]
, "E": ['E0', 'E1', 'E2', 'E3']})
# since E0 isn't column in subsequent dfs their values will be NaN
df2 = pd.DataFrame({"A": ["A4", "A5", "A6", "A7"]
, "B": ["B4", "B5", "B6", "B7"]
, "C": ["C4", "C5", "C6", "C7"]
, "D": ["D4", "D5", "D6", "D7"]})
df3 = pd.DataFrame( {"A": ["A8", "A9", "A10", "A11"]
, "B": ["B8", "B9", "B10", "B11"]
, "C": ["C8", "C9", "C10", "C11"]
, "D": ["D8", "D9", "D10", "D11"]})
frames = [df1, df2, df3]
result = pd.concat(frames, ignore_index =True)#ignore index resets indecies
result #->
A B C D E
0 A0 B0 C0 D0 E0
1 A1 B1 C1 D1 E1
2 A2 B2 C2 D2 E2
3 A3 B3 C3 D3 E3
4 A4 B4 C4 D4 NaN
5 A5 B5 C5 D5 NaN
6 A6 B6 C6 D6 NaN
7 A7 B7 C7 D7 NaN
8 A8 B8 C8 D8 NaN
9 A9 B9 C9 D9 NaN
10 A10 B10 C10 D10 NaN
11 A11 B11 C11 D11 NaN
concatenate dataframes
# Stack the DataFrames on top of each other
#survey_sub and survey_sub_last10 are both dataframes
vertical_stack = pd.concat([survey_sub, survey_sub_last10], axis=0)
# Place the DataFrames side by side
horizontal_stack = pd.concat([survey_sub, survey_sub_last10], axis=1)
concat dataframes
result = pd.concat([df1, df2])
concat columns pandas dataframe
In [1]: df1 = pd.DataFrame(
...: {
...: "A": ["A0", "A1", "A2", "A3"],
...: "B": ["B0", "B1", "B2", "B3"],
...: "C": ["C0", "C1", "C2", "C3"],
...: "D": ["D0", "D1", "D2", "D3"],
...: },
...: index=[0, 1, 2, 3],
...: )
In [8]: df4 = pd.DataFrame(
...: {
...: "B": ["B2", "B3", "B6", "B7"],
...: "D": ["D2", "D3", "D6", "D7"],
...: "F": ["F2", "F3", "F6", "F7"],
...: },
...: index=[2, 3, 6, 7],
...: )
...:
In [9]: result = pd.concat([df1, df4], axis=1)
# This will merge columns of both the dataframes
concat frames with pandas
frames = [df1, df2, df3]
result = pd.concat(frames)
How to Concatenate Dataframe in python
# Stack the DataFrames on top of each other
vertical_stack = pd.concat([survey_sub, survey_sub_last10], axis=0)
# Place the DataFrames side by side
horizontal_stack = pd.concat([survey_sub, survey_sub_last10], axis=1)
pandas concat
pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
keys=None, levels=None, names=None, verify_integrity=False)
result = pd.concat([df1, df4], axis=1)
result = pd.concat(frames, keys=['x', 'y', 'z'])
result = pd.concat([df1, df4], axis=1, join='inner')
result = pd.concat([df1, df4], axis=1, join_axes=[df1.index])
concat dataframe pandas
# provide list of dataframes
res = pd.concat([df1, df2])
pd.concat in python
s1 = pd.Series(['a', 'b'])
s2 = pd.Series(['c', 'd'])
pd.concat([s1, s2])
#GIVEN THAT BOTH HAS SAME INDEX
dataframe concatenate
# Pandas for Python
df['col1 & col2'] = df['col1']+df['col2']
#Output
#col1 col2 col1 & col2
#A1 A2 A1A2
#B1 B2 B1B2
pd df concat
pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)],
... ignore_index=True)
concate the dataframe in pandas..
df_asset_dummy=pd.concat([df_num_feature,df_nominal_dummy,df_ordinal_label],axis=1)
df_asset_dummy.head()
concat series to dataframe
>>> pd.concat([students, pd.DataFrame(marks)], axis=1)
0 0
0 Alex 0.80
1 Lauren 0.75
© 2022 Copyright:
DekGenius.com