df.loc[df['column_name'] == some_value]
//To select rows whose column value equals a scalar, some_value, use ==:
df.loc[df['A'] == 'foo']
//To select rows whose column value is in an iterable, some_values, use isin:
df.loc[df['B'].isin(['one','three'])]
//Combine multiple conditions with "&" :
df.loc[(df['column_name'] >= A) & (df['column_name'] <= B)]
df.loc[(df['column_name'] >= A) & (df['column_name'] <= B)]
#To select rows whose column value is in an iterable array, which we'll define as array, you can use isin:
array = ['yellow', 'green']
df.loc[df['favorite_color'].isin(array)]